Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap

نویسنده

  • Emmanuel Flachaire
چکیده

In regression models, appropriate bootstrap methods for inference robust to heteroskedasticity of unknown form are the wild bootstrap and the pairs bootstrap. The finite sample performance of a heteroskedastic-robust test is investigated with Monte Carlo experiments. The simulation results suggest that one specific version of the wild bootstrap outperforms the other versions of the wild bootstrap and of the pairs bootstrap. It is the only one for which the bootstrap test gives always better results than the asymptotic test. JEL classification: C12, C15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Core Discussion Paper 9924 a Better Way to Bootstrap Pairs

In this paper we are interested in heteroskedastic regression models, for which an appropriate bootstrap method is bootstrapping pairs, proposed by Freedman (1981). We propose an ameliorate version of it, with better numerical performance.

متن کامل

A new approach to bootstrap inference in functional coefficient models

We introduce a new, factor based bootstrap approach which is robust under heteroskedastic error terms for inference in functional coefficient models. Modeling the functional coefficient parametrically, the bootstrap approximation of a test statistic used for inference on parameter invariance is shown to hold asymptotically. In simulation studies, the factor based bootstrap inference outperforms...

متن کامل

Heteroskedasticity - and - Autocorrelation - Consistent Bootstrapping

In many, if not most, econometric applications, it is impossible to estimate consistently the elements of the white-noise process or processes that underlie the DGP. A common example is a regression model with heteroskedastic and/or autocorrelated disturbances, where the heteroskedasticity and autocorrelation are of unknown form. A particular version of the wild bootstrap can be shown to work v...

متن کامل

Nonparametric Bootstrap Tests for Neglected Nonlinearity in Time Series Regression Models∗

Various nonparametric kernel regression estimators are presented, based on which we consider two nonparametric tests for neglected nonlinearity in time series regression models. One of them is the goodness-of-fit test of Cai, Fan, and Yao (2000) and another is the nonparametric conditional moment test by Li and Wang (1998) and Zheng (1996). Bootstrap procedures are used for these tests and thei...

متن کامل

Can we trust the bootstrap in high-dimension?

We consider the performance of the bootstrap in high-dimensions for the setting of linear regression, where p < n but p/n is not close to zero. We consider ordinary least-squares as well as robust regression methods and adopt a minimalist performance requirement: can the bootstrap give us good confidence intervals for a single coordinate of ? (where is the true regression vector). We show throu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2005